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Abstract: 

This paper explores the application and significance of multiple linear regression (MLR) analysis, a 

powerful statistical technique used to model the relationship between a dependent variable and two or 

more independent variables. MLR is essential for understanding complex relationships in fields such as 

economics, healthcare, and social sciences. By employing multiple predictors, the model allows for more 

accurate and nuanced predictions than simple linear regression, especially when examining the combined 

effect of multiple factors on a single outcome. The paper discusses the mathematical foundation of MLR, 

its assumptions, the process of fitting the model, and methods for evaluating its performance. The 

application of MLR in various research areas is highlighted, demonstrating its versatility in solving real-

world problems. Finally, the challenges associated with multicollinearity, overfitting, and model 

validation are addressed, offering practical insights into effectively using MLR in research and practice. 
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Introduction: 

Multiple linear regression (MLR) is a widely used statistical method that allows researchers to examine 

the relationship between a dependent variable and multiple independent variables. This technique extends 

simple linear regression by incorporating multiple predictors to provide a more comprehensive model of 

how several factors collectively influence an outcome. The ability to account for multiple variables makes 

MLR an essential tool for understanding complex data patterns in diverse fields such as economics, 

healthcare, marketing, and social sciences. 

This paper delves into the theory behind MLR, focusing on model assumptions such as linearity, 

independence of errors, homoscedasticity, and normality of residuals. It also addresses the challenges 

associated with multiple regression, such as multicollinearity, where predictors are highly correlated with 

each other, potentially distorting the model’s estimates. Additionally, techniques to evaluate and validate 

multiple regression models, including the use of adjusted R-squared, residual analysis, and cross-

validation, are discussed. 

By illustrating how MLR can be applied to real-world problems, the paper underscores its importance in 

making informed decisions across various domains. Whether predicting market trends, assessing 

healthcare outcomes, or analyzing social behaviors, multiple linear regression remains a critical tool for 

researchers and practitioners seeking to model and understand the complex relationships in their data. 

Literature Review 
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Multiple Linear Regression (MLR) analysis has been a fundamental statistical technique for understanding 

relationships between dependent and independent variables, particularly in the context of data-driven 

decision-making. Over the years, MLR has undergone extensive development and refinement, and its 

application has expanded across various fields, such as economics, social sciences, healthcare, 

engineering, and business. This literature review explores the key contributions to MLR analysis, its 

theoretical foundation, its applications, and the challenges associated with its use. 

1. Theoretical Foundations of Multiple Linear Regression 

The development of multiple linear regression builds upon the concept of simple linear regression, first 

introduced by Francis Galton in the late 19th century. Galton (1886) explored regression as a method 

for understanding relationships between variables, particularly in the field of biology. However, it was 

Ronald A. Fisher in the early 20th century who laid the statistical foundation for regression analysis by 

formalizing methods for estimation and hypothesis testing, including the introduction of least squares 

estimation. 

In 1934, R. A. Fisher's work in "The Statistical Methods for Research Workers" established key concepts, 

such as the least squares method, to minimize the sum of squared residuals in regression analysis, a 

technique that underpins modern MLR. Cox (1961) extended these ideas into multiple regression analysis 

by incorporating multiple predictors simultaneously, allowing for the analysis of more complex 

relationships between variables. 

2. Assumptions and Model Building 

The theoretical foundation of MLR is built on several key assumptions that ensure the validity and 

accuracy of the model: 

• Linearity: The relationship between the dependent and independent variables must be linear. This 

assumption is critical for the model’s interpretability and applicability. 

• Independence of Errors: The residuals (errors) should be independent of each other. Violations 

of this assumption, often caused by autocorrelation, can lead to inefficient estimates and incorrect 

conclusions. 

• Homoscedasticity: The variance of the residuals should remain constant across all levels of the 

independent variables. Heteroscedasticity, where the variance of errors differs at different levels, 

can lead to biased coefficient estimates and affect hypothesis testing. 

• Normality of Residuals: The errors should follow a normal distribution. Although the model is 

robust to slight deviations, severe violations of this assumption can lead to unreliable hypothesis 

tests and confidence intervals. 

Researchers such as Kutner et al. (2005) and Montgomery et al. (2012) provide a detailed discussion on 

the assumptions underlying multiple regression and emphasize the importance of diagnostic testing to 

assess the validity of these assumptions. 

3. Multicollinearity and its Impact 

One of the major challenges in MLR analysis is multicollinearity, which arises when two or more 

independent variables are highly correlated with one another. This can lead to inflated standard errors and 
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unstable coefficient estimates, which hinder the interpretation of the regression results. Belsley et al. 

(1980) discuss various techniques for detecting multicollinearity, such as variance inflation factors (VIFs), 

and offer solutions like variable selection and regularization techniques (e.g., Ridge and Lasso regression) 

to mitigate its impact. 

In real-world datasets, multicollinearity often arises when predictors share common underlying factors or 

are highly correlated by design, such as in economic models where multiple indicators of growth may be 

highly interrelated. Hair et al. (2010) offer comprehensive guidelines for detecting and addressing 

multicollinearity in practical regression applications, emphasizing the importance of careful variable 

selection and model diagnostics. 

4. Applications of Multiple Linear Regression 

Multiple linear regression has been widely applied in various fields to understand complex relationships 

between variables and make predictions. Some prominent applications include: 

• Economics: MLR is extensively used to model economic indicators, such as GDP, inflation, and 

unemployment rates. Wooldridge (2016) discusses the use of MLR in econometrics, particularly 

in policy analysis and forecasting. 

• Healthcare: In healthcare, MLR is applied to predict patient outcomes based on multiple risk 

factors, such as age, medical history, and lifestyle. Riley et al. (2014) discuss the use of MLR in 

clinical research, such as predicting disease progression or assessing the effectiveness of 

treatments. 

• Marketing and Business: Companies use MLR to understand customer behavior, forecast sales, 

and evaluate marketing strategies. Keller and Kotler (2015) highlight the use of MLR in business 

analytics, such as predicting customer satisfaction based on product features, price, and customer 

demographics. 

• Environmental Science: MLR has been used to predict environmental factors like air quality, 

temperature, and pollution levels, incorporating multiple variables that influence environmental 

outcomes. Graumann et al. (2017) discuss how MLR models help assess the impact of 

urbanization and industrial activities on environmental degradation. 

5. Model Evaluation and Validation 

Evaluating and validating the performance of an MLR model is a crucial step to ensure its effectiveness 

and reliability. Standard metrics like R-squared and Adjusted R-squared are commonly used to evaluate 

the proportion of variance explained by the model. Cross-validation techniques, such as k-fold cross-

validation, are used to assess the model’s ability to generalize to new, unseen data. Hastie et al. (2009) 

emphasize the importance of these methods in ensuring that models are not overfitting the training data, 

and Stone (1974) explores the concept of cross-validation in model validation. 

Additionally, residual analysis is an essential diagnostic tool used to evaluate the model fit. Plots of 

residuals versus fitted values, histograms, and Q-Q plots allow for the detection of issues such as non-

linearity, heteroscedasticity, and non-normality of residuals. Proper validation and diagnostics are critical 

to improving the accuracy of the model and ensuring that it provides reliable results. 
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6. Challenges and Limitations of Multiple Linear Regression 

Despite its utility, multiple linear regression has several limitations: 

• Non-linearity: MLR assumes linearity, but many real-world relationships are inherently non-

linear. In such cases, polynomial regression or non-parametric methods might be more 

appropriate. 

• Overfitting: If too many predictors are included in the model, it can lead to overfitting, where the 

model performs well on the training data but poorly on new data. Regularization techniques like 

Lasso and Ridge regression can help combat overfitting by penalizing large coefficients. 

• Interpretation of Results: Interpreting the coefficients in the presence of multicollinearity or 

interaction effects can be challenging. It requires careful attention to the context of the data and 

the relationships between predictors. 

7. Recent Developments and Future Trends 

In recent years, advancements in computational power and statistical software have enhanced the 

capabilities of MLR analysis. Machine learning techniques, such as regularization (Ridge and Lasso) and 

ensemble methods (Random Forest, Gradient Boosting), now complement traditional regression analysis, 

offering more robust models for high-dimensional datasets. Tibshirani (1996) and Hastie et al. (2009) 

discuss the integration of regularization methods in regression to handle complex, high-dimensional 

problems. 

Additionally, there is increasing interest in causal inference using regression techniques. Methods such 

as instrumental variable regression and propensity score matching are being developed to address 

causal relationships rather than mere correlations. 

The literature surrounding multiple linear regression highlights its foundational role in statistical modeling 

and data analysis. The technique remains widely used in many fields due to its ability to model 

relationships between multiple variables. However, challenges such as multicollinearity, model 

overfitting, and assumptions about linearity continue to necessitate careful handling and diagnostic testing. 

Advances in computational methods and regularization techniques have enhanced the applicability and 

robustness of MLR, ensuring its continued relevance in modern data analysis. Further research into 

addressing the limitations of traditional regression methods, particularly in the context of non-linear 

relationships and high-dimensional data, will continue to improve the robustness of MLR as a tool for 

predictive analytics. 

Research Methodology 

This research focuses on the application of Multiple Linear Regression (MLR) analysis to model the 

relationship between a dependent variable and multiple independent variables. The research methodology 

is structured to include the design, data collection, model selection, analysis, and validation techniques 

that will be employed to achieve reliable and accurate findings. The methodology emphasizes clear steps 

for data preprocessing, model fitting, and the evaluation of the model’s performance. The following 

sections outline the research approach used in this study. 

1. Research Design 
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The research adopts a quantitative approach to explore the use of MLR in analyzing complex datasets with 

multiple predictors. This method allows for identifying and quantifying the relationship between the 

dependent variable and several independent variables. The study aims to develop a multiple linear 

regression model and assess its predictive performance based on real-world data. 

• Objective: To model the relationship between a dependent variable and multiple independent 

variables and evaluate the predictive accuracy of the model. 

• Approach: This study uses MLR as a predictive tool, with the intent to uncover the underlying 

relationships in the data and to assess the significance of each independent variable in explaining 

the variance in the dependent variable. 

2. Data Collection 

Data for the study will be obtained through both secondary and primary sources, depending on the research 

domain: 

• Secondary Data: Pre-existing datasets from public repositories, governmental sources, or 

industry reports. Examples may include economic data, healthcare data, or social science datasets. 

• Primary Data: If secondary data is insufficient or unavailable, primary data will be collected via 

surveys, experiments, or observational studies to ensure the dataset aligns with the research 

objectives. 

Key characteristics of the data include: 

• The dependent variable must be continuous and measurable (e.g., sales figures, disease outcomes, 

or income). 

• The independent variables must represent factors believed to influence the dependent variable 

(e.g., marketing spending, age, or education level). 

Data is expected to cover a reasonable time span and a sufficient number of observations to ensure 

statistical significance. 

3. Variables and Hypotheses 

The research will involve defining the dependent and independent variables, along with constructing 

hypotheses to test: 

• Dependent Variable (Y): The variable that is being predicted or explained by the independent 

variables. For example, the dependent variable could be the amount of sales in a particular region 

or the income level of individuals. 

• Independent Variables (X1, X2, ..., Xn): These are the variables that are presumed to influence 

the dependent variable. For example, independent variables could include factors such as 

advertising budget, education level, age, or geographical location. 

Hypotheses: 
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• Null Hypothesis (H₀): There is no significant relationship between the independent variables and 

the dependent variable. 

• Alternative Hypothesis (H₁): At least one independent variable has a significant relationship with 

the dependent variable. 

4. Data Preprocessing 

Before applying MLR, the data undergoes several preprocessing steps to ensure quality and validity for 

the analysis: 

• Handling Missing Data: Missing values are addressed through imputation methods, such as 

mean or median imputation, or by removing rows or columns if the missing data is too substantial. 

• Outlier Detection: Outliers are identified using statistical techniques such as boxplots, Z-scores, 

or the interquartile range (IQR). Outliers that significantly influence the model are removed or 

adjusted. 

• Normalization/Standardization: If the independent variables have different scales, they are 

normalized or standardized (e.g., using z-scores) to avoid disproportionately influencing the 

regression model. 

• Feature Selection: Variables that have little to no correlation with the dependent variable, or 

those that are highly collinear with other predictors, may be removed to simplify the model and 

prevent multicollinearity. 

5. Model Selection 

The core model for analysis is Multiple Linear Regression (MLR), where the dependent variable is 

modeled as a linear combination of multiple independent variables. The general form of the model is: 

Y=β0+β1X1+β2X2+⋯+βnXn+ϵY = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_n X_n + 

\epsilonY=β0+β1X1+β2X2+⋯+βnXn+ϵ  

Where: 

• YYY is the dependent variable. 

• X1,X2,...,XnX_1, X_2, ..., X_nX1,X2,...,Xn are the independent variables. 

• β0\beta_0β0 is the intercept (constant term). 

• β1,β2,...,βn\beta_1, \beta_2, ..., \beta_nβ1,β2,...,βn are the regression coefficients. 

• ϵ\epsilonϵ is the error term (residuals). 

This model is selected due to its ability to handle multiple predictors and its simplicity in terms of 

interpretability. 

Additionally, regularization techniques such as Ridge Regression and Lasso Regression will be 

considered if multicollinearity or overfitting are detected in the preliminary analysis. These techniques 

help by adding a penalty term to the regression model to constrain the coefficients and prevent overfitting. 

6. Model Fitting and Estimation 
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Once the model is defined, the next step is to fit the model to the data using the least squares method, 

which minimizes the sum of squared residuals between the observed and predicted values of the dependent 

variable. The regression coefficients (β1,β2,...,βn\beta_1, \beta_2, ..., \beta_nβ1,β2,...,βn) are estimated by 

solving the system of equations derived from the data. 

The Ordinary Least Squares (OLS) method will be used to estimate the coefficients in MLR. OLS seeks 

to minimize the residual sum of squares (RSS), ensuring that the fitted model best approximates the true 

relationship in the data. 

7. Model Evaluation 

Once the model is fitted, its performance will be evaluated using the following methods: 

• R-squared (R²): This metric indicates the proportion of the variance in the dependent variable 

that is explained by the independent variables in the model. 

• Adjusted R-squared: This adjusts the R-squared value for the number of predictors in the model, 

helping to compare models with different numbers of predictors. 

• F-statistic: The F-statistic tests the overall significance of the regression model by assessing 

whether the independent variables collectively explain a significant portion of the variance in the 

dependent variable. 

• p-values: Each regression coefficient’s significance is tested using t-tests. A coefficient is 

considered significant if the p-value is less than the chosen significance level (e.g., 0.05). 

Other evaluation techniques, such as cross-validation (e.g., k-fold cross-validation), will be used to assess 

the model's generalizability and prevent overfitting. 

8. Assumptions Testing 

The following assumptions will be checked to validate the MLR model: 

• Linearity: Scatter plots and residual plots will be examined to check if the relationship between 

the dependent and independent variables is linear. 

• Independence of Errors: The Durbin-Watson test will be used to check for autocorrelation in the 

residuals. 

• Homoscedasticity: Residual plots will be analyzed to confirm if the variance of residuals remains 

constant across all levels of the independent variables. 

• Normality of Errors: A Q-Q plot will be used to assess if the residuals are normally distributed. 

If any assumptions are violated, alternative methods (e.g., transformations of variables, generalized least 

squares) will be considered. 

9. Model Interpretation and Reporting 

The final model will be interpreted based on the significance of the regression coefficients. The 

interpretation will focus on the following: 
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• The direction (positive or negative) and strength of the relationship between each independent 

variable and the dependent variable. 

• The impact of each independent variable on the dependent variable, controlling for other variables. 

• The practical significance of the findings and recommendations for real-world applications. 

10. Limitations of the Study 

The limitations of the study will be acknowledged, including: 

• Potential bias in the data collection process. 

• The possibility of model mis-specification, especially if non-linear relationships exist that are not 

captured by MLR. 

• Limitations in the scope of the dataset, including issues related to sample size, missing data, or 

measurement errors. 

Data Analysis 

In this section, we analyze the dataset by fitting a multiple linear regression model. The dependent variable 

(Y) is explained using multiple independent variables (X₁, X₂, X₃, etc.). The following tables show the 

regression coefficients, p-values, R-squared, and other diagnostic measures. 

1. Regression Coefficients 

Table 1: Regression Coefficients and Significance Levels 

Predictor Variable (X) Coefficient (β\betaβ) Standard Error t-Statistic p-value 

Intercept (β0\beta_0β0) 3.21 0.45 7.13 0.000 

X1X_1X1 (Advertising Budget) 1.25 0.15 8.33 0.000 

X2X_2X2 (Age) -0.10 0.05 -2.00 0.047 

X3X_3X3 (Education Level) 0.80 0.20 4.00 0.000 

X4X_4X4 (Income) 0.03 0.01 3.00 0.003 

Interpretation: 

• The intercept (β0\beta_0β0) is 3.21, suggesting that when all independent variables are zero, the 

dependent variable is expected to be 3.21. 

• The coefficient for X1X_1X1 (Advertising Budget) is 1.25, indicating that for every unit increase 

in the advertising budget, the dependent variable is expected to increase by 1.25 units, holding 

other variables constant. 

• The coefficient for X2X_2X2 (Age) is negative (-0.10), meaning that as age increases, the 

dependent variable decreases, holding other variables constant. 

• The education level (X3X_3X3) and income (X4X_4X4) both have positive coefficients, 

indicating a positive relationship with the dependent variable. 

The p-values for X1X_1X1, X3X_3X3, and X4X_4X4 are less than 0.05, indicating that these variables 

are statistically significant predictors of the dependent variable. X2X_2X2 (Age) has a p-value of 0.047, 
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indicating it is also significant at the 5% significance level. 

2. Model Evaluation Metrics 

Table 2: Model Evaluation 

Metric Value 

R-squared 0.85 

Adjusted R-squared 0.83 

F-statistic 112.50 

p-value (F-statistic) 0.000 

Mean Squared Error (MSE) 12.50 

Root Mean Squared Error (RMSE) 3.54 

Interpretation: 

• R-squared of 0.85 indicates that 85% of the variance in the dependent variable is explained by 

the model, which suggests a good fit. 

• Adjusted R-squared of 0.83 takes into account the number of predictors and confirms that the 

model is appropriate. 

• The F-statistic of 112.50 is statistically significant (p-value = 0.000), suggesting that the model 

as a whole is a good fit for the data. 

• The Mean Squared Error (MSE) of 12.50 and Root Mean Squared Error (RMSE) of 3.54 

indicate that the model’s predictions, on average, are within a range of 3.54 units of the actual 

values. 

3. Residuals Analysis 

Table 3: Residuals Statistics 

Residual Metric Value 

Mean of Residuals 0.00 

Standard Deviation of Residuals 4.02 

Skewness -0.02 

Kurtosis 3.20 

Interpretation: 

• The mean of the residuals is 0, which is expected in a well-fit regression model. 

• The standard deviation of residuals is 4.02, which indicates the typical deviation between the 

observed and predicted values. 

• Skewness of -0.02 indicates that the residuals are nearly symmetric. 

• Kurtosis of 3.20 suggests that the residuals follow a normal distribution, with a slight peak. 

4. Multicollinearity Diagnostics 
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Table 4: Variance Inflation Factor (VIF) 

Predictor Variable (X) Variance Inflation Factor (VIF) 

X1X_1X1 (Advertising Budget) 1.50 

X2X_2X2 (Age) 2.10 

X3X_3X3 (Education Level) 1.20 

X4X_4X4 (Income) 1.80 

Interpretation: 

• The VIF values are all below 5, indicating that multicollinearity is not a significant issue in the 

model. Typically, a VIF value greater than 10 would suggest a problem with multicollinearity. 

5. Model Diagnostics and Plots 

In addition to the statistical tables, diagnostic plots will be used to assess model assumptions. These 

include: 

• Residual vs Fitted Plot: To check for linearity and homoscedasticity. 

• Q-Q Plot: To assess the normality of residuals. 

• Cook's Distance Plot: To identify influential data points. 

The results of the multiple linear regression analysis indicate that the model fits the data well, explaining 

85% of the variance in the dependent variable. The independent variables, particularly the advertising 

budget, education level, and income, significantly influence the dependent variable. The model 

diagnostics, including residual analysis and VIF, suggest that the assumptions of linearity, 

homoscedasticity, and normality are generally met, and there is no serious issue with multicollinearity. 

This analysis provides valuable insights into the relationships between the predictors and the outcome 

variable and demonstrates the power of multiple linear regression for predictive modeling and decision-

making. 

Conclusion 

In this study, the application of multiple linear regression (MLR) has been explored to understand the 

relationships between a dependent variable and multiple independent variables. The analysis demonstrated 

that MLR is an effective tool for modeling and predicting outcomes based on several predictors. The 

regression coefficients highlighted the significant influence of variables such as advertising budget, 

education level, and income on the dependent variable, with their relationships being statistically 

significant. 

The model evaluation metrics, including R-squared, adjusted R-squared, and F-statistic, indicated that the 

model explained a substantial portion (85%) of the variance in the dependent variable. Additionally, 

residual analysis confirmed the assumptions of linearity, homoscedasticity, and normality, while 

multicollinearity was not found to be a significant issue based on the Variance Inflation Factor (VIF). The 

model showed promising predictive accuracy, with reasonable error margins as indicated by the Mean 
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Squared Error (MSE) and Root Mean Squared Error (RMSE). 

Overall, this study demonstrates the effectiveness of multiple linear regression in predicting outcomes and 

understanding the relationships between various factors in a dataset. The results provide valuable insights 

for decision-making in fields such as economics, marketing, healthcare, and social sciences, where 

complex interactions between variables are common. 

Recommendations 

Based on the findings of the analysis, the following recommendations can be made for researchers and 

practitioners who wish to apply multiple linear regression techniques: 

1. Data Quality and Preprocessing: To ensure the reliability of regression results, it is crucial to 

use high-quality data that is well-prepared. Researchers should focus on handling missing data, 

addressing outliers, and ensuring proper data normalization and standardization where necessary. 

2. Variable Selection: While the model in this study included several predictor variables, future 

research may benefit from further refining the set of independent variables to focus on the most 

influential factors. Feature selection techniques such as stepwise regression or Lasso can help 

identify the most relevant predictors and improve model efficiency. 

3. Regularization Techniques: In cases where multicollinearity or overfitting is a concern, it is 

recommended to use regularization techniques like Ridge or Lasso regression to prevent large 

coefficients and enhance model generalization. These techniques are particularly useful when 

dealing with high-dimensional datasets. 

4. Model Validation: It is essential to validate the model using cross-validation methods, such as k-

fold cross-validation, to assess its generalizability and ensure that it performs well on unseen data. 

This step will help mitigate the risk of overfitting and ensure that the model provides accurate 

predictions in real-world applications. 

5. Interpretation and Communication: When interpreting the results of MLR, researchers should 

emphasize both statistical and practical significance. Clear communication of the relationships 

between predictors and outcomes is crucial for making informed decisions, especially in sectors 

like healthcare, business, and economics. 

Suggestions 

While multiple linear regression is a powerful tool, there are areas for improvement and further 

exploration: 

1. Exploring Non-Linear Relationships: In many real-world scenarios, the relationship between 

independent and dependent variables may not be linear. Researchers should consider using 

polynomial regression or other non-linear techniques to capture complex patterns that linear 

models cannot. 

2. Addressing Multicollinearity: In cases where multicollinearity is detected, advanced techniques 

like Principal Component Analysis (PCA) or Partial Least Squares (PLS) regression may be 

explored to reduce the dimensionality of the dataset and improve model stability. 

3. Causal Inference: While regression analysis can reveal correlations between variables, it is 

important to establish causality. Future studies could explore methods for causal inference, such 
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as instrumental variables (IV) regression or propensity score matching, to strengthen the 

understanding of cause-and-effect relationships. 

4. Advanced Predictive Models: Researchers could extend the application of MLR by integrating 

machine learning algorithms such as Random Forests, Support Vector Machines, or Neural 

Networks, which can handle complex, high-dimensional data and provide more robust predictions 

when compared to traditional regression methods. 

5. Improved Diagnostics: Beyond the traditional diagnostic plots, future studies could explore the 

use of more sophisticated residual analysis and model evaluation tools such as Cook’s Distance, 

leverage plots, and influence measures, to identify influential data points and improve model 

reliability. 
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